Astroparticle Physics

Instructor: A.M. van den Berg

You don't have to use separate sheets for every question.
Write your name and S number on every sheet
There are $\mathbf{4}$ questions with a total number of marks: 33

WRITE CLEARLY

(1) (Total 6 marks)

The production of photons in a medium is an important mechanism to detect high-energy particles.
(a) (3 marks)

Cherenkov radiation is one of these mechanisms. What conditions are required to create Cherenkov radiation?
(b) (3 marks)

Name two other mechanisms which can be responsible for the creation of photons from high-energy particles.
(2) (Total 15 marks)

The Friedmann equation can be deduced from Newtonian mechanics based on a summation of energies. The Friedmann equation is given as:

$$
\frac{\dot{R}^{2}}{R^{2}}=H^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{R^{2}}
$$

In addition we can define the so-called critical energy density ρ_{c} as:

$$
\rho_{c}=\frac{3 H^{2}}{8 \pi G}
$$

(a) (3 marks)

In addition to the assumption that we can use Newtonian mechanics to derive the Friedmann equation, it holds only when a specific condition is satisfied. Under what name is this condition known and what does it mean?
(b) (3 marks)

Based on Newtonian mechanics, the three important types of energy are: total energy, kinetic energy, and potential energy. Identify these different energies with each of the terms in the Friedmann equation listed above.
(c) (3 marks)

What is the consequence for the Universe in case the energy density ρ equals the critical energy density in terms of the total energy contained in the Universe?
(d) (3 marks)

In the radiation-dominated Universe the energy density ρ_{r} scales as T^{4}, where T is the temperature of the photons. Work out an approximation for the Hubble constant as a function of the temperature and of the time t, where $t=0$ at the Big Bang.
(e) (3 marks)

Which other energy densities play an important role in the development of the Universe?
(3) (Total 6 marks)
(a) (3 marks)

Use the relativistic equations underneath to find an expression for the Doppler shift.

$$
\begin{aligned}
p_{x}^{\prime} & =\gamma\left(p_{x}-\beta E\right) \\
p_{y}^{\prime} & =p_{y} \\
p_{z}^{\prime} & =p_{z} \\
E^{\prime} & =\gamma\left(E-\beta p_{x}\right)
\end{aligned}
$$

(b) (3 marks)

The redshift is given as:

$$
z=\frac{\lambda_{\mathrm{obs}}-\lambda_{\mathrm{em}}}{\lambda_{\mathrm{em}}}
$$

Show that for small values of β, that $z=\beta$.
(4) (Total 6 marks)

During the first 5 minutes of the early Universe, several chemical elements have been produced. For instance after these 5 minutes the mass fraction of helium is according to measurements and calculations equal to about 25%.
(a) (3 marks)

Which parameters played a decisive role in the production of ${ }^{4} \mathrm{He}$ to these amounts?
(b) (3 marks)

Name two other chemical elements which have been produced during these first 5 minutes.
la clagiget partside
velocioy $\beta>1 / m$ where n ves Guders of riftadiou
Medium ts didectrive (can be poldrined)
ib scimillation, fluerescence, π^{0} decay,
2a cosmological plún é́ple
uniorise is homogenoous and Boropple
2b kighec luergy, gravitahtomal energy,

$$
\frac{\dot{R}^{2}}{R^{2}}=H^{2}=\frac{d \pi}{3} g \rho-\frac{k c^{2}}{R^{2}}
$$

rucultiply work $\frac{1}{2}$ Mr R^{2} to get:

$$
\begin{aligned}
& \frac{1}{2} m R^{2}=\frac{4 \pi}{3} g \rho R^{2}-\frac{1}{2} m k e^{2} d r^{2} \\
& \frac{1}{2} m n^{2}=\text { Recuretic eneligy } \\
& \frac{4 \pi}{2} \text { g } \rho R^{2}=\text { graoitational levigy } \\
& E=-\frac{m c^{2} k}{2} \text { is total lexty }
\end{aligned}
$$

2c) $\rho=\rho_{c}^{2}$ gioes $k=0$, , No curpodutis.
ad Radiadion dominnated Pr $\sim R^{-4}$

2d $H^{2}=\frac{R^{2}}{R^{2}}=\frac{8 \pi}{3} g_{r}-\frac{k e^{2}}{R^{2}}$
Radiaptein domímabed was R small; Negfect teims $\frac{1}{R^{2}}$ wita $\frac{1}{R^{4}}$

$$
\begin{aligned}
& H^{2}=\frac{R^{2}}{R^{2}} \approx \frac{8 \pi}{3} g \frac{1}{R^{4}} \\
& H=\frac{1}{R^{2}}
\end{aligned}
$$

Because $\rho_{r} \sim R^{-4}$ and $\rho_{r} \propto T^{4}$ (Stolfan')

$$
T \sim \frac{1}{R}
$$

Theus $H Q I^{2}$
For ohe depsudama of H on time t we wesd to stive differsutial equation

$$
\begin{aligned}
& \rho_{r} \alpha R^{-4} \Rightarrow \frac{\partial_{r}}{\rho_{r}}=-4 \frac{R}{R}=-4\left(\frac{\partial \pi}{3} \rho_{\rho} \rho_{r}\right)^{1 / 2} \\
& \\
& =-4 \alpha \rho_{1 / 2} \\
& \begin{aligned}
\frac{d \rho r}{\rho_{r}^{3 / 2}}=-4 \alpha d t
\end{aligned} \\
& \rho_{r}^{-1 / 2}=2 \alpha t \quad \rho_{r}=\frac{1}{4 \alpha^{2} t^{2}} \\
& H=\frac{R}{R} \alpha \rho_{r}^{1 / 2} \alpha \frac{1}{t} \Rightarrow H \alpha \frac{1}{t}
\end{aligned}
$$

Le dark energy (or vacuum emery) density

$$
\begin{aligned}
3 a E^{\prime}=h \nu^{\prime} & =\gamma(\ln v-\beta h \nu \cos A) \\
& =\gamma \operatorname{lo} \nu(1-\beta \cos \theta)
\end{aligned}
$$

Assume $\theta=\theta \quad \operatorname{li} \gamma^{\prime}=\gamma \operatorname{la} \gamma(1-\beta)$

$$
\begin{aligned}
& \left.\gamma^{\prime}=\gamma(1-\beta) \lambda\right) \\
& \lambda^{\prime}=\frac{d}{\gamma(1-\beta)}
\end{aligned}
$$

$$
\begin{aligned}
& 3 b \frac{1}{\gamma(1-\beta)}=\frac{\left(1-\beta^{2}\right)^{1 / 2}}{(1-\beta)}=\frac{\left(1-\beta 1^{1 / 2}(1+\beta)^{1 / 2}\right.}{1-\beta} \\
& =\frac{(1+\beta)^{1 / 2}}{(1-\beta)^{1 / 2}} \approx\left(1+\frac{1}{2} \beta\right)\left(1+\frac{1}{2} \beta\right) \\
& \approx 1+\beta+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \cong \beta
\end{aligned}
$$

$4 a$ temperabute drop comparad to
9) lopquatuon rate of Meypron
a) life sume of Mexptron 3) Mastingen andp

6) - -

4 PLiU, H, Be
note that i ${ }^{2}{ }^{2} H$ (denteroul) and ${ }^{3} H$ Ghe differ ent l'sposes of anty one

